PlantNet Dataset

Dataset details

Last updated: 02 July 2024
Stylized Meta Album ID PLT.PLT_NET
Domain ID PLT
Domain Name Plants
Dataset ID PLT_NET
Dataset Name PlantNet
Description Plants Dataset with different species of plants
# Classes 20
# Images 30000
Keywords ecology, plants, plant species
Data Format images
Image size 256x256
License
(original data release)
Creative Commons Attribution 4.0 International
License URL
(original data release)
https://zenodo.org/record/4726653
https://creativecommons.org/licenses/by/4.0/legalcode
License
(Stylized Meta-Album data release)
Creative Commons Attribution 4.0 International
License URL
(Stylized Meta-Album data release)
https://creativecommons.org/licenses/by/4.0/legalcode
Source PlantNet
Source URL https://plantnet.org/en/2021/03/30/a-plntnet-dataset-for-machine-learning-researchers/
Original Author Garcin, Camille and Joly, Alexis and Bonnet, Pierre and Lombardo, Jean-Christophe and Affouard, Antoine and Chouet, Mathias and Servajean, Maximilien and Salmon, Joseph and Lorieul, Titouan
Original contact camille.garcin@inria.fr
Stylized Meta Album author Romain Mussard
Created Date 01 March 2024
Contact Name Ihsan Ullah
Contact Email stylized-meta-album@chalearn.org
Contact URL https://stylized-meta-album.github.io/

Download Meta-data file

Access Dataset from OpenML

Note: From OpenML website, you can only download labels file. To download the complete dataset, use openml python api

Dataset Version OpenML ID
Mini 46055 Download
Extended 46056 Download

Code to download dataset using OpenML Python API

Install OpenML for python

  # import openml
  import openml

  # download dataset with DATASET_ID. Replace DATASET_ID with OpenML ID
  dataset = openml.datasets.get_dataset(DATASET_ID, download_data=True, download_all_files=True)


  # display dataset info
  print(dataset.name)
              

Datasets are downloaded in openml cache directory. You can check it with this code:

  # display openml cache directory
  print(openml.config.get_cache_directory())
              

Cite Stylized Meta-Album

  @inproceedings{stylized-meta-album-2024,
    title={Stylized Meta-Album: Muti-domain computer vision meta-dataset},
    author={Mussard, Romain and Gauffre, Aurélien and Ullah, Ihsan and Khuong, Thanh Gia Hieu and Amini, Massih-Reza and Hosoya, Lisheng Sun},
    booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
    url = {https://stylized-meta-album.github.io/},
    year = {2024}
  }

  @inproceedings{meta-album-2022,
    title={Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification},
    author={Ullah, Ihsan and Carrion, Dustin and Escalera, Sergio and Guyon, Isabelle M and Huisman, Mike and Mohr, Felix and van Rijn, Jan N and Sun, Haozhe and Vanschoren, Joaquin and Vu, Phan Anh},
    booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
    url = {https://meta-album.github.io/},
    year = {2022}
  }
              
Download as bib